Four Steps to Precision Public Health

Monday, December 5, 2016

When domestic transmission of Zika virus was confirmed in the United States in July 2016, the entire country was not declared at risk — nor even the entire state of Florida. Instead, precise surveillance defined two at-risk areas of Miami-Dade County, neighbourhoods measuring just 2.6 and 3.9 square kilometres. Travel advisories and mosquito control focused on those regions. Six weeks later, ongoing surveillance convinced officials to lift restrictions in one area and expand the other.

By contrast, a campaign against yellow fever launched this year in sub-Saharan Africa defines risk at the level of entire nations, often hundreds of thousands of square kilometres. More granular assessments have been deemed too complex.

The use of data to guide interventions that benefit populations more efficiently is a strategy we call precision public health. It requires robust primary surveillance data, rapid application of sophisticated analytics to track the geographical distribution of disease, and the capacity to act on such information1.

The availability and use of precise data is becoming the norm in wealthy countries. But large swathes of the developing world are not reaping its advantages. In Guinea, it took months to assemble enough data to clearly identify the start of the largest Ebola outbreak in history. This should take days. Sub-Saharan Africa has the highest rates of childhood mortality in the world; it is also where we know the least about causes of death.

Source: Nature Research (link opens in a new window)

Health Care, Technology
healthcare technology, infectious diseases, public health