The Machine that Will Help End TB

Tuesday, December 11, 2012

KwaMsane Township sits amid rolling hills in South Africa’s KwaZulu-Natal Province. Drive 30 minutes to the west and elephants, giraffes, zebras, and rhinos often stroll by the side of a highway that cuts through a game park. A few kilometers to the east lie sprawling sugarcane fields, which shimmer in the subtropical sun and appear to spill into the Indian Ocean. KwaMsane is beautiful, but it has one of the world’s highest rates of multidrug-resistant (MDR) tuberculosis, an often fatal form of the disease.

In November 2011, Jabu Ngcobo, 25, felt a pain in her side and went to the KwaMsane clinic, which resembles a trailer park. The clinic’s trailers—called parkhomes here—surround a small covered courtyard that serves as a waiting room, with patients sitting in plastic chairs. “I was all along thinking I had MDR TB because my two brothers and my sister had it,” says Ngcobo.

Her siblings learned they had the dangerous form of the disease only after giving sputum samples, which had to be transported to a laboratory in Durban, 275 kilometers to the south. The lab then had to nurture cultures of Mycobacterium tuberculosis until the colonies were large enough to be subjected to drug susceptibility tests. At best, the process takes six weeks; in reality, given the need to transport the samples, the likelihood of lab backlogs, and delays in reporting the results, three months often pass before patients in rural towns like KwaMsane learn whether they will benefit from a relatively simple, six-month course of antibiotics or instead need an 18-month barrage of heavy-duty drugs. The delay can mean the difference between permanent lung damage, or even death, and recovering with no long-term consequences.

Source: MIT Technology Review (link opens in a new window)

Health Care, Technology
public health