An easier way to manipulate malaria genes

Monday, August 11, 2014

New approach to knocking out parasite’s genes could make it easier to identify drug targets.

Plasmodium falciparum, the parasite that causes malaria, has proven notoriously resistant to scientists’ efforts to study its genetics. It can take up to a year to determine the function of a single gene, which has slowed efforts to develop new, more targeted drugs and vaccines.

MIT biological engineers have now demonstrated that a new genome-editing technique, called CRISPR, can disrupt a single parasite gene with a success rate of up to 100 percent — in a matter of weeks. This approach could enable much more rapid gene analysis and boost drug-development efforts, says Jacquin Niles, an associate professor of biological engineering at MIT.

“Even though we’ve sequenced the entire genome of Plasmodium falciparum, half of it still remains functionally uncharacterized. That’s about 2,500 genes that if only we knew what they did, we could think about novel therapeutics, whether it’s drugs or vaccines,” says Niles, the senior author of a paper describing the technique in the Aug. 10 online edition of Nature Methods.

Source: MIT News (link opens in a new window)

Categories
Education, Health Care
Tags
Base of the Pyramid, global health, health care, infectious diseases, public health, research, rural healthcare delivery